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Abstract. Digital twins promise tremendous potential to reduce time
and cost in the smart manufacturing of Industry 4.0. Engineering and
monitoring interactive digital twins currently demands integrating differ-
ent piecemeal technologies that effectively hinders their application and
deployment. Current research on digital twins focuses on specific imple-
mentations or abstract models on how digital twins could be conceived.
We propose model-driven software engineering to realize interactive dig-
ital twins and user-specific cockpits to interact with the digital twin
by generating the infrastructure from common data structure models.
To this end, we present a model-driven architecture for digital twins,
its integration with an interactive cockpit, and a systematic method of
realizing both. Through this, modeling, deploying, and monitoring in-
teractive digital twins becomes more feasible and fosters their successful
application in smart manufacturing.
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1 Introduction

Motivation and Challenges. Digital Twins (DTs) of Cyber-Physical Production
Systems (CPPSs), including their hardware and software components, promise
tremendous potential to reduce time and cost in smart manufacturing [18].
Clearly, DTs need means for information representation [4], interactive control
of CPPSs [19] and optimization functionalities [23], e.g., for adapting machine
configurations to yield higher part quality. Suitable visualizations must provide
CPPS information in a human-processable form and enable controlling the DT.
We call these services digital twin cockpit hereafter.

Research Question. How can we facilitate rapid engineering of interactive
digital twin cockpits through integrating architecture and data modeling?
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Our Approach. We propose a method to engineer interactive digital twin
cockpits systematically by generating their infrastructure based on common data
models created with Domain-Specific Languages (DSLs). We employ an architec-
ture modeling language to specify the internal structure of the DT, the interface
between the DT and the physical system, and the interface between the DT and
the DT cockpit. This facilitates the engineering of a DT cockpit and ensures
consistent integration with the DT.

Outline. In the following, Sec. 2 presents preliminaries. Sec. 3 illustrates chal-
lenges of the problem domain by example of injection molding. Sec. 4 explains
our approach and its reference architecture. Sec. 5 describes how to create a dig-
ital twin cockpit for injection molding. Sec. 6 discusses our approach and related
work. Sec. 7 concludes.

2 Preliminaries

A significant reason for the challenges of modern software systems engineering
lies in the conceptual gap [10] between the problem domains and the solution
domain software engineering. Overcoming this gap with handcrafted solutions
requires immense effort and gives rise to so-called accidental complexities [10],
i.e., problems of the solution domain, which are not conceptually relevant in the
problem domain. Model-Driven Software Engineering (MDSE) [21] is an um-
brella term for software development methodologies that employ models as pri-
mary development artifacts to reduce the conceptual gap and with it accidental
complexities.

Digital Twins in Smart Manufacturing. DTs are often described as
a digital duplicate of a physical entity [9], enabling its management and con-
trol [8] or supporting design and production decisions, and thus speeding up the
development process. DTs rely on information about the current system state
to provide, e.g., predictive maintenance or design support [14]. Since modern
CPPSs are equipped with various sensors and produce large amounts of data,
it is crucial to reduce the data into an amount the DT can process. Thus we
introduce the Digital Shadow (DS). A digital shadow is a set of models and data
traces, that in addition to the data also includes context describing metadata
for its intended purpose. Hence, a DS contains precisely the data that the DT
requires to perform its task and can, e.g., be enriched with information about
the data’s origin or accuracy. Based on a survey among the participants of the
German cluster of excellence “Internet of Production”1, which comprises 25 de-
partments and 200 researchers we conceived the following definition for a DT: A
digital twin of a system consists of a set of models of the system, a set of digital
shadows and their aggregation and abstraction collected from a system, and a
set of services that allow using the data and models purposefully with respect to
the original system. Thus DTs might comprise, for instance, engineering models
(e.g., geometries, physical behavior, energy consumption, etc.), software models

1 Internet of Production: https://www.iop.rwth-aachen.de
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(structure, behavior, deployment, etc.), and services (such as cockpits visualizing
data and providing services, optimization of CPPS use etc.).

MontiArc [7] is an architecture description language. Its elements comprise
component types that exchange messages through their interface of typed, di-
rected ports. Components are connected via unidirectional connectors and sup-
port hierarchical decomposition through which a system’s functionality can be
decomposed hierarchically. A component encapsulates a subset of the system’s
functionality, and either is composed or atomic. Composed components consist
of other components and their behavior emerges from these subcomponents and
their interaction. Due to defined interfaces MontiArc facilitates exchangeabil-
ity of components to adapt a system’s behavior. Atomic components perform
computations via embedded behavior models or handcrafted behavior imple-
mentations. Leveraging results from software language engineering, its language
and code generation capabilities can be extended flexibly [6].

MontiGem [1] generates web-based Enterprise Information System (EIS),
e.g., for finance cockpitsor IoT dashboards using Class Diagrams (CDs), Object
Constraint Language (OCL), tagging and GUI-DSL models, describing Graph-
ical User Interfaces (GUIs), as input. The provided domain models directly in-
fluence the generated data structure, the database schema, the GUI layout, and
view models. Integrating these DSLs, a variety of aspects of the resulting appli-
cation can be modeled. Using these input models, MontiGem produces code for
a pre-existing application framework that is used to build and execute the EIS.
To ensure consistency-by-construction between front- and backend, models are
used as a common source for information. Using CDs, we generate data classes
and the database schema, the communication infrastructure using the command
pattern and default website GUIs and views [11]. Additional GUI models can be
used to detail and customize the layout of the generated pages. From an OCL
model that constrains the data structure, the generator derives validators for
data objects that conform to this structure. We use a Tagging DSL to enrich
models with information for enabling different generator configurations or adding
implementation-specific adaptations. The MontiGem generator framework cre-
ates a EIS that enables creating, viewing, editing, or deleting data sets [11].

3 Modeling Challenges in Injection Molding

Injection molding [15] is a plastic processing technique in which a plastic granule
is heated and injected under pressure into an injection mold. Injection molding is
one of the leading production techniques for plastic parts and can be considered
as a representative of a classic mass production process. Fig. 1 illustrates the
typical components of an injection molding machine.

The machine operator can configure the operation point via the user inter-
face. A plastic granule is inserted into the machine through a hopper. Within
the injection unit, the plastic granule is heated and molten into the desired
consistency. The screw transfers the plastic to the nozzle. Next, the injection
unit injects the molten plastic into the mold while applying high pressure. The
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Fig. 1. The ARBURG Allrounder 520 injection molding machine from the example.

clamping unit keeps the mold closed during injection so that the applied pres-
sure is countered and the mold halves do not open up. After a cooling time, the
machine ejects the workpiece from the mold.

Various device components with multiple influencing variables and process
parameters are directly involved in the successful realization of an injection
molded part. During the injection molding process, temperature and pressure
sensors measure the process parameters. These already indicate the quality of
the produced workpiece, and an experienced operator can derive how to adapt
the configuration to meet required quality criteria. Injection molding machines
are sensitive to stress and contextual changes as, e.g., in the environmental tem-
perature. Thus, the same configuration does not always yield workpieces of equal
quality.

Visualizing process and context information for users to make changes in the
configuration traceable and automating countermeasures (e.g., increasing the
pressure) before further defective products are finished can significantly decrease
production time and reduce material consumption. To support such operations,
a DT cockpit should:

C1 Provide real-time information about machine states and operating context,
C2 Provide role-specific views and aggregated data showing information at dif-

ferent levels of detail,
C3 Remain consistent with the DT if the DT is adapted to and deployed on

new CPPS,
C4 Allow for interaction with the DT and to call specific operations on the DT

and the CPPS

4 Modeling Digital Twin Cockpits

Developing a controlling cockpit for DTs is paramount to facilitate the trust of
machine operators and customers in the DT’s activities. Since the DT consists



of many components, we aim at reusing models that describe its structure or
behavior and derive the cockpit’s code. By generating the cockpit, it remains
adaptable and can evolve if the underlying domain model or the DT evolves
(challenge C3 ). Fig. 2 shows the architecture of our system. The architecture
structures into five layers: (1) Cyber-Physical Layer, (2) Data Layer, (3) Con-
nection Layer, (4) Application Layer, and (5) Visualization Layer.

The main components are (A) the CPPS, the actual machine and its control
interface, (B) the Digital Twin monitoring and influencing the machine, (C)
the Data Lake with data from different information sources the DT relies on
and the DT cockpit visualizes and (D) the DT Cockpit, providing aggregated
information and visualizations of the system’s state and enabling interaction
with the DT.

The Cyber-Physical Layer describes the production system, which is mon-
itored and controlled by the DT. The CPPS component provides an interface that
enables reading sensor values. Further, it can receive commands via this inter-
face and return feedback after processing these. Runtime data that the sensors
within the CPPS collect is stored in the data lake. Our DT realization requires
ports for sending commands, receiving feedback and collecting machine-specific
data, as depicted in Fig. 2. We specify the CPPS and its ports in MontiArc
since the language provides typed and directed ports. Thus, we can ensure that
other components access the CPPS’s ports only in the intended ways and that
exchanged data conforms to a specified type.

The Data Lake within the Data Layer is an extensive data storage that
can span multiple databases containing data from the CPPS and its operating
context. The Data Lake also encapsulates the MontiGem database that includes
all processed data and additional information, e.g., user profiles or settings.
These data structures are described with CDs that serve as input from which
MontiGem generates the data structure, the infrastructure for storing the data of
the DT cockpit as well as data update functionalities or observation methods to
recognize data updates. The Data Lake provides an interface to query data for
the DT and the DT cockpit. To represent the CPPS’s state, the DT aggregates,
processes, and transforms this data to DSs which the DT cockpit visualizes.

The components in the Connection Layer communicate with the physical
layer and provide data for the application layer. The DataProcessor compo-
nent creates and shares knowledge about the system’s state by producing digital
shadows based on data contained in the data lake. It queries data from specific
databases within the data lake and further processes and transforms these data
to create DSs. The DT cockpit visualizes these DSs that provide, e.g., real-time
information about the CPPS’s state (meeting challenge C1 ). The Executor

within the DT obtains a solution describing what the CPPS is supposed to do
and transforming descriptions into commands sent to the CPPS. The CPPS re-
turns feedback evaluated by the Executor. Depending on the evaluation results,
the Executor sends further commands that contribute to fulfilling the solution.

The components of this layer depend on the descriptions of exchanged data.
Thus, the structure of this data must be defined. We use CDs to derive the
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Fig. 2. The integrated digital twin and digital twin cockpit architecture in MontiArc.

structure of exchanged objects automatically. This enables generating storage
and query functionality for the specified data objects and generating the com-
munication interfaces between the DT and DT cockpit. They stay compatible if
a model changes, as both rely on the same structure description.

The Application Layer contains the main functionality of the DT includ-
ing its ability to detect unintended behavior of the CPPS and deciding on reac-
tions to these. The purpose of the Evaluator is to monitor the system behavior
and detect possible malfunctions. It queries information about the system or its
context from the data processor and receives DSs in return. If the Evaluator

detects unintended behavior, it creates a goal and sends it to the Reasoner.
The Reasoner uses knowledge about the CPPS, similar systems, and the sys-
tem’s operating context to decide how to realize this goal. If several possible
solutions exist, it determines the best solution, e.g., depending on costs, energy
consumption, or time efficiency. The Evaluator’s behavior is modeled with a
domain-specific event language [5], which describes events based on DSs that
encapsulate data from different points in time. The Reasoner’s behavior is spec-
ified as a statechart, reacts to inputs, changes, its state, and triggers actions.

In the DT cockpit, the LogicProcessor handles relevant data and states
of the DT. This data is queried and further processed by the DataAggregator

sending commands to the LogicProcessor, which evaluates these. The resulting
data can then be send to the frontend to visualize the system’s data and states.



Commands are used to write data back in the system or to set specific goals for
the DT. Currently, only the infrastructure is generated. The behavior of those
components needs to be described by handwritten code.

The Visualization Layer includes all graphical components of the DT cock-
pit used to visualize DS and configure the DT and the CPPS. The visualizations
of the DT cockpit frontend are generated from MontiGem GUI models. The data
accessible at runtime is part of the GUI models and conforms to its represen-
tation in the CDs. Thus, the visualization is in sync with data provided by the
components of the DT. Different views on the same data objects are available to
show different levels of detail. This allows to use the application in different parts
of an organization: Visualizations with detailed technical information provide in-
depth insight into the current system. Other, more high-level views, display an
abstract status, e.g., for management purposes, or data analysis. By generating
the frontend based on specifications in the GUI models, we provide role-specific
views of the data provided by the production system (meeting challenge C2 ).

The user can supervise the DT and its behavior by interaction through the
GUI (meeting challenge C4 ). The GUI displays all information provided by
the data processor, e.g., the state of the production system, static information,
such as available users or connected devices. Additionally, dynamic information
can provide an accurate status of the running system, e.g., a currently running
process step of different parts of the system. The user of the digital twin cockpit
directly influences the DT behavior via the GUI, e.g., specify the next goal.

We combine information from a variety of models to create the DT cockpit
and reuse the CDs describing the DT data structure for generating the cockpit.
This has two important advantages: (1) CDs have to be written only once, (2) the
communication between data processor and application backend is trivial. This
common data basis provides consistency-by-construction and has an immediate
impact on the generated code, as the DT cockpit always fits the DT. More-
over, using MDSE methods, the DT cockpit can adapt to changing requirements
flexibly.

5 Application to Injection Molding

To show the practical application of our approach, we have realized a DT and
DT cockpit for injection molding (cf. Sec. 3). We display the DSs of the injection
molding process to illustrate the machine state.

Our dashboard (Fig. 3) for the operator role visualizes the data in the injec-
tion molding process. The operator can see the currently observed machine as
well as pressure and temperature data. In the top right is a real-time display of
the current status of the process. To interact with the machine, there is a button
below which triggers a full machine stop. Other views include raw data from
the data lake such as logs for the last process events, structure and architec-
ture models as well as data for each pressure and temperature sensor. For each
machine in the production process, the status and statistical information about
their produced parts are visualized. In conclusion, the presented DT connects



Fig. 3. Screenshot of the dashboard for the injection molding process.

to the CPPS and creates DSs representing the CPPS’s state. The DT cockpit
integrates with the DT and visualizes the DSs that the DT provides. Since both,
the DT and the DT cockpit base on the same domain model, and the concrete
implementation is derived from this model, changes within this model are con-
sistently reflected in both systems. If, e.g., a new sensor is added to the CPPS,
only one change in the data model is required to realize an adaptation in the DT
and to add a new graphical element representing the sensor in the DT cockpit.

6 Discussion and Related Work

Our method to systematically engineer a DT and its interactive monitoring
cockpit leverages CDs for data structure modeling, the MontiArc architecture
description language to define the integrated system’s software architecture, and
MontiGem to model aggregation and presentation of manufacturing data. As
they rely on the same language workbench, integrating these approaches is ef-
fortless. Besides learning these, operating manufacturing equipment demands
for translating their models into executable programming language artifacts.
While in the past generators were required for a multitude of languages, this
is mitigated by the rise of OPC-UA, ROS-Industrial and other manufacturing
middlewares. We have evaluated our reference architecture in injection molding
and ultra-short pulse laser cutting. While the results indicate that the seamless
development of digital twins and their cockpits can reduce wastrel and, hence,
optimize the use of resources, we still need to evaluate our reference architecture
and the DSLs in a greater variety of contexts.



Related research in DTs often investigates their application in IoT or produc-
tion use cases [3,16,22]. For instance, [3] describes an architecture with similar
layers as our approach and follows a micro-service encapsulation suited for IoT.
[22] uses digital twins for monitoring and optimization of hollow glass produc-
tion lines. [16] sketches an architecture and visualization for digital twins and
describes possible views for an oil separation process use case. In [12], a moni-
toring and assistance system for Human-Machine Interaction is described. Our
approach differs from those mentioned in the use of models to describe the ar-
chitecture and behavior of the system. Besides that, we completely generate the
DT and DT cockpit in contrast to other generative approaches for EIS, which
focus either on models to describe the structure and behavior of an application
[13] or interface modeling and interface generation [17,20]. Our approach gen-
erates a fully runnable EIS [11]. MontiGem uses multiple different input DSLs
and supports an easy to use extension mechanism to provide adaptability and
allow for agility and continuous regeneration [1,2].

7 Conclusion

We presented an approach to engineer interactive DTs systematically together
with their cockpit. Our approach relies on modeling and generating the infras-
tructure of DT and cockpit based on shared data structures. Models of our DT
architecture operate on these data structures. GUI models aggregate, abstract,
and represent their contents to the user in connected DT cockpits. This facilitates
creating, deploying, and monitoring interactive DTs that can provide real-time
information about machine states and the operating context, feature role-specific
views with aggregated data and adapt to changes in the underlying models. This
fosters their successful application in smart manufacturing to optimize processes
and making better use of production equipment.
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